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Abstract—Over the past decade, genomic data has grown exponentially and is widely used in promising medical and health-related
applications, which opens up new opportunities for the field of medicine. Similar patients query (SPQ), which can help physicians
formulate an optimal therapy, is one of such popular applications. Despite its popularity, since human genomes are usually highly
sensitive, a series of policies have been launched by the government to strictly control its acquisitions and utilization. Thus, how to
prevent privacy disclosure becomes of great importance to the flourish of SPQ services. In this paper, aiming at the above challenge,
we first design a novel genetic BK-tree (GBK-tree) for a genomic database. Then, combined with a random sorting mechanism and
some existing encryption techniques, we propose an efficient and privacy-preserving similar patients query scheme over encrypted
cloud data, named CASPER. With CASPER, a medical institution can securely outsource its private genomic database to a cloud
server, and physicians can request SPQ services from the cloud server while keeping her/his query secret. Detailed security analysis
shows that CASPER can preserve privacy in the presence of different threats. Furthermore, extensive performance evaluations
demonstrate the high accuracy and efficiency of our proposed scheme.

Index Terms—Genomic data, similar patients query, privacy-preserving, genetic BK-tree, approximate edit distance.
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1 INTRODUCTION

W ITH the booming of high-throughput sequencing
technology, the cost for sequencing per human

genome has been reduced by a factor of 100 in the past
ten years [1], and a huge amount of available genomic
data has been generated in the medical domain. To better
make use of human genomic information, various popular
services based on genomic data have attracted increasing
attention [2], [3], [4], [5], [6], [7], [8]. Among them, sim-
ilar patients query (SPQ) services, which aim to find the
patients whose genomic data similar to a new patient, is
becoming more and more popular [9], [10], [11], [12], [13].
Meanwhile, edit distance [14], as one of the most important
and frequently-used metrics for human genomic research,
is usually considered as an indispensable footstone in SPQ.
Once SPQ is applied, a physician can initially propose an
optimal therapy for a new patient according to her/his
similar patients’ data and treatments. As shown in Fig. 1,
when a physician requests SPQ service, she/he first needs to
collect a DNA sample from the new patient and submit the
extracted genomic data to her/his medical institution. Then,
the medical institution performs similarity calculations with
all genomic data stored in the database. Finally, the physi-
cian can receive the identifiers of the similar patients.

However, due to the massiveness and high dimensional-
ity of genomic data (the human genome is always composed
of about 2910 million base pairs [15]), SPQ’s computation
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Fig. 1. Conceptual architecture of similar patients query service

tasks are usually delivered to one or more third parties. Nev-
ertheless, the genomic data of everyone is unique, the iden-
tity and close relatives of a target person can be inferred by
analyzing her/his genomes [16], [17]. Therefore, the flourish
of similar patients query service is still confronted with
some serious obstacles including the privacy and security
problem of genomic data [17], [18], [19], [20]. For one thing,
the genomic database maintained by a medical institution
is usually composed of large-scale patients’ identifiers and
genomes. Once directly outsourcing them to a third party
with ulterior motives, sensitive patients’ individual infor-
mation may be exposed, which will undoubtedly disturb
patients. For example, patients suffering from certain dis-
eases may be discriminated against by different industries
in the process of employment. For another, the query sent by
a physician always contains a new patient’s genomic data.
In addition to the original genomes, the patient’s potential
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TABLE 1
Comparison with prior work

Features EPISODE [8] Mahdi et al. [11] Zhu et al. [13] EFSS [7] GENSETS [9] CASPER

Similarity metric AED-1 Hamming distance Cosine distance AED-2 AED-2 AED-2
Search method kNN Compressed prefix tree Hierarchical index tree kNN kNN GBK-tree

Sub-linear query latency % ! ! % % !
Efficiency Low Medium Low Medium Low High
Security IND-SCPA IND-SCPA IND-SCPA IND-SCPA IND-SCPA IND-SCPA

Notations. AED-1and AED-2 correspond to two different computation methods of the approximate edit distance. IND-SCPA represents the
indistinguishability secure under chosen-plaintext attacks.

genetic disease will also be obtained by the third party.
Under the temptation of interests, the third party is likely
to disclose users’ information to an insurance company, and
then the insurance company can refuse the health coverage
of relevant users to avoid economic losses. In a word, the
untrusted third parties will increase the privacy risk of SPQ
while reducing the computing burden on the terminals of
the medical institution and physicians.

To address the above-mentioned challenges, plenty
of privacy-preserving schemes have been proposed and
achieved some remarkable results [21]. Specifically, the
straightforward solution is to make use of homomorphic
encryption technology, such as BGV [22] and YASHE [23],
to encrypt all genomic data as performed in [24], [25].
However, due to involving lots of time-consuming opera-
tions, existing homomorphic encryption techniques always
bring massive computation cost. Aiming at improving the
efficiency of genomic data similarity computation, some so-
lutions which can speed up the (approximate) edit distance
secure computation have been applied over genomic data
[8], [9], [10], [26], [27], [28]. Besides, from the perspective
of reducing the search time, some scholars paid attention
to introducing data structures based on different distance
metrics [11], [13], [29], [30], such as hamming distance and
cosine distance. However, due to the complexity of (approx-
imate) edit distance, it has not been taken into consideration.

In this paper, based on an improved approximate edit
distance computation method, we first design a novel data
structure called genetic BK-tree (GBK-tree) for a genomic
database. Then combined with a random sorting mech-
anism, HMAC and symmetric-key encryption (SKE), we
present an efficient and privacy-preserving similar patients
query scheme over encrypted cloud data, named CASPER.
With CASPER, the medical institution can securely out-
source its genomic database to a cloud server in the form
of an encrypted GBK-tree, and the physicians can request
SPQ service without revealing their patients’ genomic data.
Meanwhile, the cloud sever can store the encrypted GBK-
tree and return high-precise results to physicians. Specifi-
cally, the main contributions of this paper are fourfold.

• Novel genetic BK-tree. We propose a novel GBK-tree as
the basis of CASPER. Specifically, we first design an
Improved genomic Edit Distance Approximate com-
putation algorithm (IEDA). Then, based on IEDA, we
construct a GBK-tree over converted genomes, which
can provide more precise and efficient similar patients
query services.

• Privacy-preserving SPQ services. CASPER keeps all pa-

tients’ original genomes secret during the search pro-
cess. When CASPER is applied, both the genomic data
stored in a medical institution and generated by new
patients are converted and encrypted by random sort-
ing, HMAC and SKE, which cannot be obtained by a
cloud server or a malicious third party.

• High-precise query results. By additionally considering
two special situations to improve an existing approx-
imate edit distance algorithm, we improve the accuracy
of similarity matching result. And the experimental
results on a real-world dataset show that there are
almost no query errors in the query results, which
means CASPER is high-accurate.

• Efficiency. The thorough evaluations using real-world
and synthetic datasets show that the proposed IEDA
does a good performance in secure approximate edit
distance computation, and the construction of GBK-tree
strictly reduces the computation overhead. The detailed
comparative analysis demonstrates CASPER is more
efficient than some state-of-the-art similar schemes.

In TABLE 1, we give a comparison of our proposed
scheme and the prior work. As far as we know, CASPER is
the first work which applies a data structure to genomic data
by using approximate edit distance as a metric. Meanwhile,
under the premise of achieving the same security level,
CASPER shows the best performance.

The remainder of this paper is organized as follows. In
Section 2, we present the system and threat models, and
identify design goals. Then, some basic knowledge used
in our work are introduced in Section 3. After that, we
propose a novel genetic BK-tree in Section 4, and construct
the framework of CASPER in Section 5. Next, the security
and performance of the proposed scheme are analyzed in
Section 6 and Section 7, respectively. Finally, we give the
related work in Section 8 and draw a conclusion in Section 9.

2 MODELS AND DESIGN GOALS

In this section, we formalize the system model, threat model,
and identify our design goals.

2.1 System model
The system model mainly focuses on how to construct an
encrypted GBK-tree over a genomic database owned by
a medical institution, and provide secure similar patients
query services for registered physicians via a cloud server.
The medical institution and each physician are equipped
with a PC/mobile device, which can be used for local

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:14:18 UTC from IEEE Xplore.  Restrictions apply. 



2168-7161 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2021.3131287, IEEE
Transactions on Cloud Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

(1-a) Registration request

(1-b) Keys & System parameters

Medical Institution 

(MI)

Physicians

(Ps)

1. System initialization

2. Secure similar patient query

Cloud Sever 

(CS)

Fig. 2. System model under consideration

computation and communication. Particularly, as shown in
Fig. 2, the system consists of three main entities: physicians
(Ps), a medical institution (MI), and a cloud server (CS).
• Ps: Ps is a collection of physicians, in which each

physician has registered in MI (as step 1-a, 1-b). Only a
registered P can generate compliance encrypted queries
according to patients’ private genomic data, and further
enjoy the secure SPQ services offered by CS (as step 2-b,
2-c).

• MI: MI owns a genomic database which stores plenty
patients’ genomic data. To provide Ps with efficient
SPQ services and keep the original genomic database
confidential, MI will generate an encrypted GBK-tree
and upload it to CS for searching similar patients (as
step 2-a).

• CS: CS has abundant storage space and powerful com-
puting ability, which is also regarded as a link between
Ps and MI. For one thing, it can store the encrypted
GBK-tree uploaded by MI (as step 2-a). For another,
it can perform calculations over stored cloud data to
provide search services for Ps (as step 2-c).

2.2 Threat model
In the threat model, we consider that CS is honest-but-curious
[31], MI and Ps are trusted. Specifically, CS will execute
operations honestly to provide SPQ services, but it may try
to analyze encrypted GBK-tree and query requests to obtain
more sensitive information. MI will faithfully provide CS
with an encrypted GBK-tree, and Ps will follow the protocol
strictly to launch a query request. Besides, we assume there
is no collusion between MI/Ps and CS. Note that, there may
be some other attacks such as poisoning attacks and denial
of service during the service. However, since we focus on
the privacy and efficiency of SPQ services, those active or
passive attacks are beyond the scope of this paper and will
be discussed in our future work. Considering the above
security issues, we aim to achieve the following security
requirements in this work.
• R1: The genomic database owned by MI, which con-

tains patients’ identifiers and genomes, is the private
property of MI. Therefore, CS should not be able to
infer any information about the database by analyzing
the stored encrypted GBK-tree.

• R2: The queries submitted by Ps involve new patients’
sensitive information, which should not be available to
CS. Thus, according to the received encrypted queries,
CS should not obtain any private information about
new patients.

• R3: The query results returned to Ps consists of all
similar patients’ identifiers, which can assist physicians
in locating the corresponding patients. Therefore, even
if CS owns the final results, it should has no ability to
read the identifiers.

2.3 Design goals

In this paper, we are devoted to designing an efficient and
privacy-preserving similar patients query scheme under the
above-mentioned system and threat models. Specifically, the
following privacy and performance goals should be met
simultaneously.

• Privacy Preservation. Since a large amount of personal
privacy information is hidden in human genomes,
privacy preservation is the basic requirement of our
proposed scheme. That means, whether the genomic
data stored in a medical institution or newly extracted
by a physician, it only can be accessed by themselves.
Besides, the query results consists of similar patients’
identifiers should not be read by CS.

• High accuracy. The proposed scheme is designed for
SPQ services, based on the query result, Ps can initially
determine an optimal therapy for a new patient. Thus,
the accuracy of the query results directly affects the
availability of the proposed scheme. In order to help
Ps formulate a feasible treatment, the algorithm used
by CS to match similar genomes should be as accurate
as possible.

• Efficient performance. Although the storage and comput-
ing capabilities of CS are thought as powerful, consid-
ering that multiple physicians may request at the same
time and a large-scale GBK-tree would be uploaded
to CS, we are still committed to making the process
of searching similar patients as efficient as possible to
provide Ps with quality real-time services.

3 PRELIMINARIES

In this section, we briefly review the edit distance algorithm
[14], BK-tree data structure [32], a genomic edit distance
approximation algorithm [9] and symmetric-key encryption
[33]. These will serve as the basis of our scheme.

3.1 Edit distance algorithm

Edit distance [14] is an algorithm to find minimum number
of operations (insertion, deletion, and substitution) required
to convert one string s1 into the other string s2. Denote the
lengths of s1 and s2 as l1 and l2, respectively. Then, we
can convert the process of calculating edit distance to the
process of filling a (l1 + 1) × (l2 + 1) matrix M with each
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element (mi,j)0≤i≤l1,0≤j≤l2 . And mi,j can be achieved by
the following equation:

mi,j =



0, if i = 0 and j = 0;

mi,j−1 + 1, if i = 0 and j > 0;

mi−1,j + 1, if i > 0 and j = 0;

min


mi,j−1 + 1,

mi−1,j + 1,

mi,j + f,

if i > 0 and j > 0,

where f takes the value of 0 if s1[i − 1] = s2[j − 1] and
1 otherwise. Finally, the value of ml1,l2 which represents
the edit distance between s1 and s2 can be achieved. The
details of edit distance computation can be found in Algo-
rithm 1, where ED(·, ·) denotes the edit distance between
two strings.

Algorithm 1: Edit distance computation
Input: Two strings s1, s2.
Output: Edit distance between s1 and s2, ED(s1, s2).

1 compute l1 = len(s1), l2 = len(s2);
2 initialize a (l1 + 1)× (l2 + 1) matrixM with each

elementM[i][j] = 0, 0 ≤ i ≤ l1, 0 ≤ j ≤ l2;
3 for 0 ≤ i ≤ l1 do
4 for 0 ≤ j ≤ l2 do
5 if i == 0 then
6 M[i][j] = j;

7 else if j == 0 then
8 M[i][j] = i;

9 else if s1[i− 1] == s2[j − 1] then
10 M[i][j] =M[i− 1][j − 1];

11 else
12 M[i][j] = 1 + min{M[i− 1][j],M[i][j −

1],M[i− 1][j − 1]};

13 returnM[l1][l2].

3.2 BK-tree data structure

BK-tree [32] is proposed for searching a set of strings S to
find some close strings to a given query string with edit
distance. Similar to other trees, BK-tree consists of nodes
and edges, the nodes represent all elements in S , and the
edges with some integer weights indicate the edit distance
from one node to another. For example, if the edge from
node s1 to node s2 has a weight w (s1, s2 ∈ S), the integer
w represents the edit distance between s1 and s2. Moreover,
the construction of BK-tree should satisfy two conditions: 1)
an arbitrary element s ∈ S can be selected as the root node;
2) for any sub-tree with a parent node sp, all nodes in the
sub-tree have the same edit distance from sp.

After constructing a BK-tree, the close strings for a
given query string q should be found out by searching the
tree. Particularly, a tolerance limit T which represents the
maximum edit distance from sq to the strings in S should
be set at first. Then starting from the root node, for each
node which can be seen as a parent node, its specific child
nodes need to be searched lie within the tolerance limit. For
a parent node sp, ed = ED(sp, sq), instead of iterating over
all sp’s children, only children with edge-weight in range

[ed−T, ed+T] need to be iterated over. And just the children
whose edit distances from sq not larger than T are the close
strings to sq .

To better illustrate how to construct and search a BK-tree,
and considering that each unit on human genome is a nu-
cleotide (A,C, T or G), an example is given as follows. We
set S = {CGT,AGCT,CGCT,GC,ACGT,CGAT,AGA
T}, q = ACAT and the tolerance limit T = 1, then Fig. 3(a)
and 3(b) show the final data structure and query result
{AGAT}, respectively.

(a) Construction. (b) Search.

Fig. 3. An example of BK-tree construction and search process.

3.3 Genomic edit distance approximation algorithm

The genomic edit distance approximation algorithm [9]
is designed for approximating the edit distance between
two genomes, which relies on the size of the symmetric
difference between the two genomes’ single-character edits
sets. The whole approximation algorithm consists of the
following three steps.

Step 1: Choose a public reference genome Ref, then com-
press two genomes GA and GB into two sets of ed-
its vcfA and vcfB through recording the minimum edits
sequence to derive GA and GB from Ref, respectively.
As a toy example, assuming the public reference genome
Ref = ACGTAAC , the genome sequence ATGGTA can
be converted into a set of multi-character edits vcf =
{(1, ins, T ), (2, sub,G), (6, del, 2)}, where ins, sub and del
denote operations insert, substitute and delete in respective.

Step 2: Decompose each edit in the multi-character edits sets
into a single-character edit to form vcfA

′ and vcfB
′. Specif-

ically, denote a multi-character edit as (loc, op, val), where
loc is the edit location on Ref, op is the type of operation (ins,
sub and del), and val is characters or values. For different
types of edit, the decomposition follows different rules.
• Delete: Deleting a θ-length string at location loc, de-

noted as (loc, del, θ), is converted into {(loc, del,
⊥), . . . , (loc+ θ − 1, del,⊥)}.

• Insert: Inserting a θ-length string (s1 . . . sθ) at location
loc, denoted as (loc, ins, s1 . . . sθ), is converted into
{(loc, ins, 1, s1), . . . , (loc, ins, θ, sθ)}.

• Substitute: Substituting the character at location loc
with a character s, denoted as (loc, sub, s), is originally
a single-character edit, no conversion required.
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TABLE 2
Definition of main variables in GBK-tree

Variables Definition

GD A genomic database consists of n genomes.

Ref /G0
The public reference genome randomly cho-
sen from GD.

vcf0
A set of three-dimensional vectors con-
verted by genome G0, and vcf0 = ∅.

vcfk,0<k<n
A set of three-dimensional vectors con-
verted by genome Gk.

ED(·, ·) The edit distance between two genomes.
| · | The length of a set or a string.

Aed(·, ·) The approximate edit distance between two
genomes.

T A GBK-tree constructed based on the con-
verted edits sets {vcf0, . . . , vcfn−1}.

T A tolerance limit.

Step 3: Compute the size of symmetric set difference be-
tween the two single-character edits sets vcfA

′ and vcfB
′,

Diff (vcfA
′, vcfB

′) = (vcfA
′ − vcfB

′) ∪ (vcfB
′ − vcfA

′), and
output it as the approximation edit distance between GA
and GB .

3.4 Symmetric-key encryption
Symmetric key algorithms [33] are algorithms for cryp-
tography that use the same cryptographic keys for both
the process of encryption and decryption. Mathematically,
symmetric-key encryption may be described as follows.

Definition 1. A symmetric-key encryption scheme consists of a
map Π : K × M → C, such that for each k ∈ K, the map
Πk : M → C,m → c = Π(k,m) is invertible. The elements
m ∈ M , c ∈ C and k ∈ K are the plaintexts, ciphertexts and
keys, respectively. Πk is the encryption function with respect to
the key k, ∆k := Π−1k is the decryption function. It is assumed
that efficient algorithms to compute Πk and ∆k exist.

4 PROPOSED GENETIC BK-TREE

In this section, we first design an improved genomic edit
distance approximation algorithm. Then, we propose a
novel genetic BK-tree (GBK-tree) for a genomic database,
which serves as the building block of CASPER. Meanwhile,
for easier expression, we give the description of the main
notations used in the process in TABLE 2.

4.1 Improved genomic edit distance approximation al-
gorithm
Although Algorithm 1 has given the way to compute the
edit distance between two strings, it cannot show the spe-
cific edits of converting s1 into s2. However, to calculate
the approximate edit distance between two genomes, the
specific edits are needed. Thus, in this subsection, based on
the matrixM generated from Algorithm 1, we first give the
details of converting original genomes to single-character
edits sets, then present the process of computing more-
precise approximate edit distance over converted genomes.
Conversion. Given a public reference genome Ref, two
genomes GA and GB , based on the Wagner-Fischer algo-
rithm [34], we introduce a method to record the minimum

edits sequence from Ref to GA and GB , the process of GA’s
conversion is chosen as an example.

• Firstly, calculate ED(Ref, GA) through filling a matrix
M with elements (mx,y)0≤x≤l1,0≤y≤l2 according to Al-
gorithm 1. Obviously, ED(Ref, GA) = ml1,l2 .

• Secondly, start from mx,y , x = l1, y = l2, if Ref ’s x-
th character Ref[x − 1] is equal to GA’s y-th character
GA[y − 1], no edit is required at location x of Ref, skip
to mx−1,y−1. Otherwise, we first check whether mx,y =
mx−1,y−1 + 1, if it does, (x, sub,GA[y − 1]) is added
to vcfA, skip to mx−1,y−1; if it does not and mx,y =
mx,y−1 + 1, (x, ins,GA[y− 1]) is added to vcfA, skip to
mx,y−1; if it does not andmx,y = mx−1,y+1, (x, del,⊥)
is added to vcfA, skip to mx−1,y . Update x, y and repeat
the above operation to expand vcfA until x = y = 0.

• Thirdly, sort all added single-character edits in
the final vcfA in ascending location number. How-
ever, at the same location, there may exist multi-
ple operations ins, which will hinder the design
of CASPER. To solve this problem, we convert the
set {(loc, ins, s1), (loc, ins, s2), . . . , (loc, ins, sθ)} into
{(loc, ins, s1), (loc, ins+ r, s2), . . . , (loc, ins+ r+ (θ−
2), sθ)}, where r is a randomly chosen number. Note
that (loc, ins, sb) must be added in vcfA earlier than
(loc, ins, sa) for ∀a < b ∈ [1, θ].

After finishing the genomes’ conversion, both vcfA and
vcfB are sets consisting of single-character edits:

{(loc(η){A,B}, op
(η)
{A,B}, val

(η)
{A,B})|η ∈ [1, l{A,B}]},

where loc
(η)
{A,B} ∈ [0, l1], op(η){A,B} ∈ {sub, del, ins, ins +

r, ins+r+1, . . . }, val(η){A,B} ∈ {A,G,C, T,⊥} and l{A,B} =

|vcf{A,B}| = ED(Ref, G{A,B}).
To make this process clearer, a toy example is given in

Fig 4. Assume that Ref = ACGT , GA = CAAGGT , due to
m2,4 = m1,3 + 1, m0,2 = m0,1 + 1, m0,1 = m0,0 + 1, the
result vcfA = {(0, ins, C), (0, ins+ r,A), (2, sub,G)} can be
achieved. !"& !"' !"( !") !""

‘C’ ‘A’ ‘A’ ‘G’ ‘G’ ‘T’

0 1 2 3 4 5 6

‘A’ 1 1 1 2 3 4 5

‘C’ 2 1 2 2 3 4 5

‘G’ 3 2 2 3 2 3 4

‘T’ 4 3 3 3 3 2 3

*!+, = 0- ./1- 2 - 0- ./1 3 4- 5 - 67- 189- :;

Fig. 4. An example of converting GA to vcfA

Computation. To obtain the approximate edit distance from
GA toGB , the solution given in [9] is to directly compute the
value of Diff (vcfA, vcfB), which inevitably leads to the loss
of accuracy. In order to make up for the lack, an improved
genomic edit distance approximate computation algorithm
(IEDA) is proposed as shown in Algorithm 2.
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• Firstly, compute a set Loc = {loc1, loc2, . . . , locγ} =

{loc(1)A , . . . , loc
(lA)
A }

⋂
{(loc(1)B , . . . , loc

(lB)
B }, in which

loc1 < loc2 < · · · < locγ . Then, all single-character
edits with loc

(α)
A ∈ Loc, α ∈ [1, lA] are extracted to

form a new set vcfA
′, and all edits with loc

(β)
B ∈ Loc,

β ∈ [1, lB ] are extracted to form a new set vcfB
′, too.

Besides, whether an edit is in vcfA
′ or vcfB

′, if its
operation value (i.e., op(α){A,B}) is not equal to del or
sub or ins (e.g. ins + r), there should be an edit with
the same values of location and operation in the other
set; otherwise the edit will be deleted from its set. And
the edits in the two sets are sorted in increasing order
of location value, if the location values are same, they
will be sorted in increasing order of operation value.
After updating vcfA

′ and vcfB
′, the initial value of the

approximate edit distance between GA and GB can be
set to Aed(GA, GB) = |vcfA|+ |vcfB | − |vcfA

′| − |vcfB
′|

(|vcfA
′| = |vcfB

′|).
• Secondly, compare the two edits with the same

position in vcfA
′ and vcfB

′ in sequence by using
the following method. Let (loc

(α)
A , op

(α)
A , val

(α)
A ) and

(loc
(β)
B , op

(β)
B , val

(β)
B ) be a pair, where loc(α)A = loc

(β)
B .

If op(α)A 6= op
(β)
B and val

(α)
A 6= val

(β)
B , Aed(GA, GB)

is updated by Aed(GA, GB) + 2; if op(α)A 6= op
(β)
B but

val
(α)
A = val

(β)
B , updated by Aed(GA, GB) + 1. When

the two single-character edits have the same operation
value, i.e., op(α)A = op

(β)
B , the value of Aed(GA, GB)

remains unchanged if val(α)A = val
(β)
B . In addition to

the above cases, if op(α)A = op
(β)
B but val(α)A 6= val

(β)
B ,

Aed(GA, GB) is updated by Aed(GA, GB) + 1. Af-
ter completing all the comparisons, the final achieved
Aed(GA, GB) denotes the genomic approximate edit
distance from GA to GB .

Algorithm 2: Improved genomic edit distance ap-
proximate computation (IEDA)

Input: Genomes GA, GB , public reference genome Ref.
Output: Aed(GA, GB), the genomic approximate edit

distance from GA to GB .
1 compress GA and GB into two sets of single-character

edits vcfA and vcfB , respectively;
2 extract the edits in vcfA and vcfB that need to be

compared to form two sets vcfA
′ and vcfB

′;
3 compute len = |vcfA

′| = |vcfB
′|;

4 initialize Aed = |vcfA|+ |vcfB | − 2 · len;
5 denote vcfA

′ as array A[len][3], vcfB
′ as array B[len][3];

6 for 0 ≤ i ≤ len− 1 do
7 if A[i][1]! = B[i][1] && A[i][2]! = B[i][2] then
8 Aed+ = 2;

9 else if A[i][1]! = B[i][1] && A[i][2] == B[i][2] then
10 Aed+ = 1;

11 else if A[i][1] == B[i][1] && A[i][2]! = B[i][2] then
12 Aed+ = 1;

13 else Aed+ = 0 ;

14 return Aed.

Correctness of improved genomic edit distance approx-
imation algorithm. Given two genomes GA and GB , and
converting them into vcfA and vcfB . Based on the exper-

imental results given in [9], we can know that the size
of symmetric set difference between vcfA and vcfB is very
close to the edit distance from GA to GB , which can be ex-
pressed as |Diff(vcfA, vcfB)| ≈ ED(GA, GB). According to
the definition of symmetric set difference, Aed(GA, GB) =
|Diff(vcfA, vcfB)| = |vcfA| + |vcfB | − 2 · |vcfA ∩ vcfB |. This
shows that all three-dimensional vectors which are not in
vcfA and vcfB simultaneously, are all considered to be the
edits that affect the process of converting GA to GB , which
lowers the accuracy of approximate edit distance. Under
the condition of loc(α)A = loc

(β)
B , we further improve the

accuracy by considering the following situations.
Situation 1. op(α)A 6= op

(β)
B ∈ {sub, ins}, and val

(α)
A =

val
(β)
B ∈ {A,C,G, T}. When converting GA to GB (or

GB to GA), only one edit with operation ins or del is
needed. For example, assume Ref0 = AAGGT , GA =
ACGGT and GB = AACGGT , thus ED(GA, GB) = 1,
vcfA = {(2, sub, C)}, vcfB = {(2, ins, C)}. If we compute
Aed(GA, GB) based on the size of symmetric set difference,
Aed(GA, GB) = |Diff(vcfA, vcfB)| = 2. But if we compute
Aed(GA, GB) based on Algorithm 2, Aed(GA, GB) = 1,
which is equal to ED(GA, GB). Specifically, the edit needed
to convert GA to GB is (1, ins, C), and the edit needed to
convert GB to GA is (2, del,⊥).

Situation 2. op(α)A = op
(β)
B ∈ {sub, ins}, and val

(α)
A 6=

val
(β)
B ∈ {A,C,G, T}. When convertingGA toGB (orGB to

GA), only one edit with operation sub is needed. For exam-
ple, assume Ref0 = AAGGT , GA = ACGGT and GB =
AGGGT , thus ED(GA, GB) = 1, vcfA = {(2, sub, C)},
vcfB = {(2, sub,G)}. If we compute Aed(GA, GB) based
on the size of symmetric set difference, Aed(GA, GB) =
|Diff(vcfA, vcfB)| = 2. But if we compute Aed(GA, GB)
based on Algorithm 2, Aed(GA, GB) = 1, which is equal to
ED(GA, GB). Specifically, the edit needed to convert GA to
GB is (2, sub,G), and the edit needed to convert GB to GA
is (2, sub, C). The same is true when op(α)A = op

(β)
B = ins.

Therefore, the improved genomic edit distance approxi-
mation algorithm is correct.

4.2 A proposed novel GBK-tree

In this subsection, we focus on how to construct and search a
GBK-tree for a genomic database and a given query genome.
Different from BK-tree, GBK-tree utilizes approximate edit
distance as a metric instead of edit distance, and its nodes
store sets of single-character edits instead of strings. Specif-
ically, given a genomic database GD with n genomes and
a query genome Gp, the entire process can be divided into
construction and search.

• Stage 1. The construction of GBK-tree
Firstly, a genome from GD is randomly chosen as the

public reference genome Ref of GD. In addition to Ref,
the remaining genomes in GD will form a new collection
GD∗ = {G1, G2, . . . , Gn−1}. Based on Ref, all genomes in-
cluded in GD∗ can be converted into sets of single-character
edits {vcf1, vcf2, . . . , vcfn−1} by following Conversion in
Section 4.1.

Based on the converted data {vcf0, vcf1, . . . , vcfn−1}, a
GBK-tree T can be constructed, where vcf0 = ∅ is the single-
character edits set of Ref. Specifically, denote vcf0 as the
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root node, {G0 = Ref, G1, . . . , Gn−1} as the corresponding
genomes of {vcf0, vcf1, . . . , vcfn−1}. Start from vcf1 (i.e., k=1),
{vcf1, . . . , vcfk, . . . , vcfn−1}will be added into T in sequence
in a top-down manner, and the details are given as follow.
• Step 1. Initialize k′ = 0;
• Step 2. According to Computation in Section 4.1, com-

pute the approximate edit distance between Gk′ and
Gk, i.e., Aed(Gk′ , Gk);

• Step 3. If there exists no child node of vcfk′ with edge-
weight equal toAed(Gk′ , Gk), add vcfk into T as a child
node of vcfk′ with edge-weight equal to Aed(Gk′ , Gk),
set k = k + 1, return to Step 1; otherwise, find the child
node vcfk whose edge-weight is Aed(Gk′ , Gk), set k′ =
k, return to Step 2.

Until adding all {vcfk|k ∈ [1, n−1]} into the GBK-tree T , the
process of construction is finished. In short, if a node conflict
occurs while inserting vcfk into the tree, the insertion process
will be propagated down the children of this node until an
appropriate parent of vcfk is found, and each insertion in
the tree should start from the root node Ref0. As shown
in Fig. 5, if T is constructed over GD, the edge-weight of
each node in T is equal to the approximate edit distance
between the two nodes connected by the edge. And the
approximate edit distance from any node in a sub-tree to the
parent node of the sub-tree’s root node is same, for example,
Aed(G5, G66) = Aed(G5, G7) = 1.
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Fig. 5. A example of GBK-tree

• Stage 2. The search of GBK-tree
After completing the construction of T , similar genomes

in GD should be found for a given query genome Gp, and
the maximum edit distance from these similar genomes to
Gp should be not larger than a tolerance limit T.

According to the public reference genome Ref, Gp can
be converted into a set of single-character edits vcfp at first.
Then, we are able to form the set SD which consists of all
Gp’s similar genomes by executing the following operations.
• Step 1. Initialize SD= ∅, and the parent nodes set PN=
{vcf0};

• Step 2. For each node vcfk′ ∈ PN, compute the ap-
proximate edit distance between Gk′ and Gp, that is,
Aed(Gk′ , Gp). If Aed(Ref, Gp) ≤ T, add Gk′ to SD;
otherwise Gk′ does not belong to the similar genomes
of Gp;

• Step 3. If PN consists of the most bottom leaf nodes,
the process of search is over; otherwise, for each
node vcfk′ ∈ PN, calculate the range [Aed(Gk′ , Gp) −

TABLE 3
Definition of main variables in CASPER

Variables Definition

ξ
The number of segments that Ref is divided
into.

sgω The ω-th segment of Ref.
πω The length of sgω .

C(ξ+1)×9
An index matrix that can query the assign-
ment within segments.

k1, k2, k3, k4 Secret keys used in HMAC and SKE.
r Random number used in edit ins.

E(T ) The encrypted form of T .

idk′,0≤k′<n
The identifies of the patient whose genome
is Gk′ .

idEk′ The encrypted form of identifier idk′ .

[[vcfk]]
The processed vcfk through random sort-
ing.

E(vcfk) The encrypted vcfk via HMAC.
F (sk, ch) Encrypt ch with HMAC via a secret key sk.
l{k,p} The number of elements in vcfk or vcfp.

ID A set of encrypted identifies.
NS A collection of E(T )’s nodes.

T, Aed(Gk′ , Gp) + T] and pick up all its child nodes
whose edge-weights belong to the range. All of the
selected child nodes form a new parents nodes set PN
to replace the old one, return to Step 2.

Finally, all Gp’s similar genomes will be added to SD.

5 AN EFFICIENT AND PRIVACY-PRESERVING SIMI-
LAR PATIENTS QUERY SCHEME

In this section, we are devoted to achieving an efficient
and privacy-preserving similar patients query scheme on
an outsourced GBK-tree, named CASPER, which mainly
consists of four phases: 1) system initialization; 2) encrypted
genetic BK-tree outsourcing; 3) search request generation and
4) privacy-preserving similar patients query. The overview of
CASPER is described in Fig. 6. At first, MI generates system
parameters and secret keys, and provides physicians with
registration service ( 1 2 ). Then, MI constructs a GBK-
tree for its genomic database and encrypts the GBK-tree to
outsource it to CS ( 3 4 ). Next, the successfully registered
Ps can generate encrypted queries and send them to CS
for services request ( 5 6 ). After receiving the encrypted
queries, CS will search the encrypted GBK-tree and return Ps
with similar patients’ encrypted identifiers ( 7 8 ). Finally,
Ps read all identifiers by decrypting ciphertexts. To describe
CASPER clearer, some definitions of new variables used in
the following subsections are given in TABLE 3.

5.1 System initialization

In this phase, MI generates the system parameters and secret
keys, and provides Ps with registration services.

At first, MI randomly chooses a genome from its ge-
nomic database GD as public reference genome Ref =
(s1, s2, . . . , sm) ∈ {A,G,C, T}m. Then, MI randomly di-
vides Ref into ξ segments {sg1, sg2, . . . , sgξ}, where |sgω| =
πω, ω ∈ [1, ξ], each πω is a random number,

∑ξ
j=1 πj = m.

And the segments can be recorded as sg1 = (s1, . . . , sπ1),
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sgω(ω≥2) = (s∑ω−1
j=1 πj+1, . . . , s

∑ω
j=1 πj

). After that, for each
segment sgω , we randomly order each operation op ∈
{del, ins, sub} and each character val ∈ {A,C,G, T,⊥}
which appear in the genomes conversion process, and an
index matrix C(ξ+1)×9 can be formed as


-1 del ins sub A C G T ⊥
†1 c1,1 c1,2 c1,3 c1,4 c1,5 c1,6 c1,7 c1,8
†2 c2,1 c2,2 c2,3 c2,4 c2,5 c2,6 c2,7 c2,8
...

...
...

...
...

...
...

...
...

†ξ cξ,1 cξ,2 cξ,3 cξ,4 cξ,5 cξ,6 cξ,7 cξ,8


,

where †ω =
∑ω
j=1 πj , cω,{1,2,3} ∈ {0, 1, 2}, cω,{4,5,6,7,8} ∈

{0, 1, 2, 3, 4}. And cω,{1,2,3} refer to the corresponding index
values of operations after randomly sorting in the ω-th seg-
ment, cω,{4,5,6,7,8} ∈ {0, 1, 2, 3, 4} refer to the corresponding
index values of characters, note that cω,1 6= cω,2 6= cω,3, and
cω,4 6= cω,5 6= cω,6 6= cω,7 6= cω,8. A toy example is given in
Fig. 7, it shows a possibility of the ninth row of C(ξ+1)×9.

Next, MI chooses an HMAC scheme, an SKE algorithm
(e.g., AES) and four random secret keys k1, k2, k3, k4 which
will be used in HMAC and SKE. Besides, a random number
r ≥ 3 is also selected to be used in genomes conversion
process for distinguishing characters inserted in the same
location of public reference genome.

Finally, MI provides physicians with registration ser-
vices. After successfully verifying a physician’s registra-
tion information, MI will share the chosen Ref, HMAC
and SKE with the physician, and send the collection KP=
〈k1, k2, k3, k4, r, C(ξ+1)×9〉 to the physician.

5.2 Encrypted genetic BK-tree outsourcing
In this phase, MI first constructs a GBK-tree T over GD. Then
with KP, HMAC and SKE, MI outsources an encrypted GBK-
tree E(T ) to CS.

MI owns a genomic database GD consists of n genomes,
and each genome in GD is labeled with a unique identifier of
a patient. Except for the public reference genome (Ref, id0),
the remaining genomes in GD can be denoted as GD∗ =
{(G1, id1), . . . , (Gn−1, idn−1)}.

To construct an encrypted GBK-tree E(T ), MI first con-
verts all genomes into single-character edits sets based on
Ref. Specifically, Ref is converted into vcf0 = ∅, and the
other genomes in GD∗ are converted into {vcf1, . . . , vcfn−1}.
After that, based on {vcf0, . . . , vcfn−1}, a GBK-tree T can be
constructed through the operations in Stage 1 of Section 4.2.
Next, for each

vcfk = {(loc(1)k , op
(1)
k , val

(1)
k ), . . . , (loc

(lk)
k , op

(lk)
k , val

(lk)
k )}

stored in T , where k ∈ [1, n − 1], lk = ED(Ref, Gk), the
following steps will be performed to encrypt T .

• Step 1: For each edit (loc
(η)
k , op

(η)
k , val

(η)
k ), η ∈ [1, lk] in

vcfk, we first check which segment of Ref the location
loc

(η)
k belongs to. If C(ω−1),0 + 1 ≤ loc

(η)
k ≤ Cω,0,

ω ∈ [1, ξ], op(η)k and val
(η)
k will be replaced by the

corresponding values in the ω-th row of C(ξ+1)×9.
Moreover, if r appears in op

(η)
k , it will be replaced by

the value in KP. After completing all replacements in
vcfk, the processed vcfk can be denoted as

[[vcfk]] = {([[loc(η)k ]], [[op
(η)
k ]], [[val

(η)
k ]])|η ∈ [1, lk]}.

Example. Assume that vcfk = {(0, ins, C), (0, ins +
r,A), (2, sub,G), (7, del,⊥)}, Ref is divided into ξ
(ξ ≥ 3) segments. And the random number r is
assigned a value of 5, the 0-th, 1-th, 2-th rows of
C(ξ+1)×9 are set to (−1, del, ins, sub,A,C,G, T,⊥),
(6, 1, 0, 2, 4, 2, 3, 0, 1), (17, 2, 1, 0, 1, 0, 3, 2, 4) in respec-
tive. Thus, the processed vcfk can be obtained as
[[vcfk]] = {(0, 0, 2), (0, 5, 4), (2, 2, 3), (7, 2, 4))}.

• Step 2: For each ([[loc
(η)
k ]], [[op

(η)
k ]], [[val

(η)
k ]]) in [[vcfk]],

MI takes (k1, [[loc
(η)
k ]]), (k2, [[op

(η)
k ]]) and (k3, [[val

(η)
k ]])

as input respectively to calculate F (sk, ch), where
F (sk, ch) = Esk(ch) = HMAC(sk, ch), sk refers to
the secret key {k1, k2, k3}, ch refers to the elements in
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the processed edits sets. Then, the encrypted vcfk (i.e.,
E(vcfk)) can be represented as

{(Ek1(loc
(η)
k ), Ek2(op

(η)
k ), Ek3(val

(η)
k ))|η ∈ [1, lk]}.

Finally, MI encrypts all identifiers by SKE via k4 and
outsources the encrypted GBK-tree E(T ), whose nodes are
(E(vcfk′), id

E
k′), k

′ = {0, 1, . . . , n − 1}, to CS, where idEk′ is
an encrypted identifier.

5.3 Search request generation
In this phase, each registered P encrypts their new patients’
genomes to generate query requests, and sends the search
requests to CS for requesting SPQ services.

After successfully registering in MI, P will receive
the chosen Ref, HMAC, SKE and the collection KP=
〈k1, k2, k3, k4, r, C(ξ+1)×9〉 from MI.

Assume Gp is a new patient’s genome. To generate a
search request for Gp, P first converts Gp into vcfp based

on Ref, where vcfp = {(loc(ς)p , op
(ς)
p , val

(ς)
p )|ς ∈ [1, lp]},

lp = ED(Ref, Gp). Then, in the same way as [[vcfk]] de-
scribed in Section 5.2, for each edit (loc

(ς)
p , op

(ς)
p , val

(ς)
p ) in

vcfp, P finds out the ω-th row of C(ξ+1)×9 which satisfies

loc
(ς)
p ∈ [C(ω−1),0 + 1, Cω,0]. After that, op(ς)p and val

(ς)
p are

replaced by r and the corresponding values in the ω-th
row. Next, for each processed edit ([[loc

(ς)
p ]], [[op

(ς)
p ]], [[val

(ς)
p ]]),

secret keys k1, k2, k3 (sk) and [[loc
(ς)
p ]], [[op

(ς)
p ]], [[val

(ς)
p ]] (ch)

are input in F (sk, ch) in turn to encrypt vcfp. The encrypted
vcfp can be denoted as

E(vcfp) = {(Ek1(loc(ς)p ), Ek2(op(ς)p ), Ek3(val(ς)p ))|ς ∈ [1, lp]}.

Finally, 〈E(vcfp),T〉 is sent to CS for requesting service,
T is a tolerance limit selected by P.

5.4 Privacy-preserving similar patients query
In this phase, CS searches the encrypted GBK-tree E(T ) and
returns the encrypted identifiers of similar patients to Ps
according to their search requests.

After receiving 〈E(vcfp),T〉 from P, CS first initializes an
empty identify set ID and a node set NS= {(E(vcf0), idE0 )}.
Then, from root node to the most bottom leaf nodes, CS
executes the following steps to finish the retrieval of E(T ).
• Step 1: Check whether the node(s) in NS store(s) similar

genome(s) of Gp. For each node (E(vcfk′), id
E
k′) in NS,

CS computes the approximate edit distance from Gp to
Gk′ , i.e., Aed(Gp, Gk′). If Aed(Gp, Gk′) ≤ T, add idEk′
into ID; otherwise no action is required.

• Step 2: Determine the retrieval range and update
NS. For each node (E(vcfk′), id

E
k′) in NS, its child

nodes in the next layer whose edge-weights belong to
[Aed(Gp, Gk′) − T, Aed(Gp, Gk′) + T] will form a new
NS and replace the original.

• Step 3: Repeat Step 1 and 2 until NS is not updated.
The final ID will contain the encrypted identifiers of the

patients whose genomes’ approximate edit distance from
Gp is not larger than T. However, since the query and
GBK-tree sent to CS have been encrypted, the operations
{del, sub, ins, ins+ r, . . . } are indistinguishable during the
above steps. To solve this problem, an improved secure

genomic edit distance approximate computation algorithm
(SEDA) based on IEDA is presented in Algorithm 3, which
can calculate the approximate edit distance between two en-
crypted single-character edits setsE(vcfp) andE(vcfk′), k

′ ∈
[0, n− 1]. Compared with IEDA, SEDA is more suitable for
the proposed privacy-preserving scheme.

Algorithm 3: Improved secure genomic edit dis-
tance approximate computation (SEDA)

Input: Two encrypted sets E(vcfp) and E(vcfk′).
Output: Genomic approximate edit distance between

Gp and Gk′ , Aed(Gp, Gk′).
1 compute lenp = |E(vcfp)|, lenk′ = |E(vcfk′)|;
2 denote E(vcfp) as array U [lenp][3], E(vcfk′) as array

K[lenk′ ][3];
3 initialize two arrays U ′[ ][3],K′[ ][3];
4 initialize len = 0, i = 0, j = 0;
5 while i ≤ lenu − 1 && j ≤ lenk − 1 do
6 if U [i][0] == K[j][0] then
7 for 0 ≤ k ≤ 2 do
8 U ′[len][k] = U [i][k];
9 K′[len][k] = K[j][k];

10 len+ = 1; i+ = 1; j+ = 1;

11 else if U [i][0] < K[j][0] then i+ = 1 ;
12 else j+ = 1 ;

13 return two arrays U ′[len][3] and K′[len][3];
14 initialize Aed = lenu + lenk − 2 · len;
15 for 0 ≤ i ≤ len− 1 do
16 if U ′[len][1]! = K′[len][1] &&

U ′[len][2]! = K′[len][2] then
17 Aed+ = 2;

18 else if U ′[len][1]! = K′[len][1] &&
U ′[len][2] == K′[len][2] then

19 Aed+ = 1;

20 else if U ′[len][1] == K′[len][1] &&
U ′[len][2]! = K′[len][2] then

21 Aed+ = 1;

22 else Aed+ = 0 ;

23 return Aed.

At last, CS returns the final ID to P, P can decrypt and
obtain the identifiers of all similar patients via k4.

5.5 Encrypted genetic BK-tree updating

In our system model, the genomic database of MI is bound
to be expanded by the data generated by daily medical
activities, thus we present a method to update the encrypted
GBK-tree. Assume a new genome (Ge, ide) is added in GD,
(E(vcfe), id

E
e ) will be added to E(T ) as follows.

• Step 1 (@ MI): Based on Ref, convert Ge into vcfe, and
calculate Aed(Ref, Ge) = |vcfe|. If Aed(Ref, Ge) is not
equal to any edge-weight of vcf0’s child nodes, it will
be added as a new child node of vcf0 with an edge-
weight of |vcfe|. Otherwise, the node vcfke (one child
node of vcf0) with an edge-weight of |vcfe| should be
located and Aed(Ge, Gke) will be calculated through
algorithm IEDA, whether vcfke is the parent node of
vcfe is determined by judging whether Aed(Ge, Gke) is
not equal to any edge-weight of vcfke ’s child node. The
above operation will be repeated until the appropriate
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parent node vcfpn appears, and the insertion position of
vcfe will be recorded as (vcfpn, Aed(Ge, Gpn), vcfe).

• Step 2 (@ MI): By following the encryption method pro-
posed in Section 5.2, E(vcfe) and idEe can be generated.
After that, the insertion position will be updated to
(idEpn, Aed(Ge, Gpn), E(vcfe), id

E
e ) and sent to CS for

asking a new node insertion. If multiple nodes need
to be added at the same time, send their insertion
positions together.

• Step 3 (@ CS): After receiving a node insertion request
from MI, CS adds (E(vcfe), id

E
e ) to E(T ) as a child

node of the node whose identifier is idEpn, with an edge-
weight of Aed(Ge, Gpn).

6 SECURITY ANALYSIS

In CASPER, we use an SKE algorithm (e.g. AES) to en-
crypt the identifiers of patients, which cannot be attacked
successfully without secret key [35]. In addition, before
being encrypted, the original genomes are converted into
sets of triples (i.e., single-character edits) based on a public
reference genome Ref at first, which means unless owning
Ref, no one can restore the original genomes even if they
have obtained all plaintext converted genomes. However,
some genomic mutations in specific locations may reveal the
privacy of patients. Thus, we mainly focus on the privacy of
triples sets (i.e., vcf k, k ∈ [1, n− 1] and vcf q).

Specifically, we first define a leakage function L [36],
[37], and then introduce the real and ideal environments
in respective for the subsequent formal security definition
and analysis.

6.1 Leakage function

CASPER is essentially equivalent to a symmetric-key search-
able encryption scheme, as a necessary part of the security
definition of searchable encryption, the leakage function L
can capture all the information leaked during the evaluation
on encrypted data in CASPER. Informally, considering the
encrypted database {∅, E(vcf1), . . . , E(vcfn−1)} and the en-
crypted queries E(vcfp), 1 ≤ p ≤ ϑ, the L of CASPER can
be summarized as three aspects (all of them are considered
to be default information leakage):
• Size Pattern: The cloud sever learns the total number

of genomes in the genomic database (n) and the query
requests submitted by physicians (ϑ). Besides, the size
of each converted genome (lk and lp) and the data
structure of the encrypted genomic database (E(T ))
also can be achieved.

• Access Pattern: The cloud server reveals the encrypted
identifiers of similar patients that are returned for the
SPQ query requests.

• Search Pattern: The cloud server can learn whether a
same encrypted genome (i.e., encrypted GBK-tree node)
is queried by two different queries.

6.2 Real and ideal environment

The security of CASPER will be proven in the real and ideal
environments, which are defined with L as follows.

Real environment. The real environment involves a stateful
probabilistic polynomial time (PPT) adversary A and a
challenger C, and the two participants interact as follows.

• Initialization phase: A generates a database DA con-
sists of {∅, vcf1, . . . , vcfn−1} in random, the GBK-tree
TA constructed for DA owns the same structure as
E(T ) and is sent to C.

• Setup phase: Given a security parameter λ, C fol-
lows the operations in phase system initialization to
create KP= 〈k1, k2, k3, r, C(ξ+1)×9〉 and keep it pri-
vate. Then, according the steps in phase encrypted ge-
netic BK-tree outsourcing, C encrypts TA into E(TA) =
{E(vcfk′)}

n−1
k′=0, where E(vcf0) = ∅, E(vcfk) =

{(Ek1(loc
(η)
k ), Ek2(op

(η)
k ), Ek3(val

(η)
k ))|η ∈ [1, lk]}.

• Query phase 1: A adaptively chooses a number of
queries {vcfp}

p1
p=1 and sends them to C. In response, C

returns {E(vcfp)}
p1
p=1 to A by executing the operations

in phase search request generation.
• Challenge phase: C returns the encrypted GBK-tree
E(TA) to A.

• Query phase 2: In the phase, A can also adaptively
choose a number of queries {vcfp}

p2
p=p1+1 and submit

them to C. Same as Query phase 1, {E(vcfp)}
p2
p=p1+1

will be returned to A.

Let rA denote the internal random bits used by A in the
real environment. And ViewReal

A is used to denote the en-
semble (DA, E(TA), {E(vcfp)}

p2
p=1, rA), which is essentially

the view of A in the above-described real environment.
Ideal environment. The ideal environment involves a state-
ful PPT adversary A and a simulator S , and the two
participants interact as follows.

• Initialization phase: A generates a database DA con-
sists of {∅, vcf1, . . . , vcfn1

} in random, the GBK-tree TA
constructed for DA owns the same structure as E(T )
and is sent to S .

• Setup phase: S first create a matrix C′(ξ+1)×9 and a
number r′ in random, both of them have the basic prop-
erties mentioned in phase system initialization. After pro-
cessing each vcfk in TA based on C′(ξ+1)×9 and r′, for the
substitutions of locations, operations and characters,
S randomly assigns fixed-length values respectively,
the assignment satisfies the condition that the same
plaintext corresponding to the same ciphertext. The
final results form an encrypted GBK-tree E′(TA).

• Query phase 1: A adaptively chooses a number of
queries {vcfp}

p1
p=1 and sends them to C. In response,

C returns {E′(vcfp)}
p1
p=1 to A via the same process and

assignment as vcfk.
• Challenge phase: C returns the encrypted GBK-tree
E′(TA) to A.

• Query phase 2: In the phase, A can also adaptively
choose a number of queries {vcfp}

p2
p=p1+1 and submit

them to C. Same as Query phase 1, {E′(vcfp)}
p2
p=p1+1

will be returned to A.

Again, let rA denote the internal random bits used by
A in the ideal environment. And ViewIdeal

A,S is used to de-
note the ensemble (DA, E′(TA), {E′(vcfp)}

p2
p=1, rA), which

is essentially the view of A in the above-described ideal
environment.
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6.3 Formal security definition and analysis
Based on the views of A in the real and ideal environments,
we define and proof the security of CASPER.

Definition 2. CASPER is said to be selectively secure under
the chosen-plaintext attack model with leakage function L iff for
any PPT adversary A, who issues an encrypted GBK-tree and a
polynomial number of encrypted queries, there exists an efficient
simulator S such the advantage of A in distinguishing the views
of real and ideal environments is negligible, i.e., the function
AdvCASPER

A (λ) = |Pr[ViewReal
A = 1] − Pr[ViewIdeal

A,S = 1]| is a
negligible function in the security parameter λ.

Theorem 1. CASPER is selectively secure under chosen-
plaintext attack model with L.

Proof. The security of CASPER can be proved if it can
be proved that A has no ability to distinguish the views
observed from the real and ideal environments. In the ideal
environment, S generates E′(TA) and {E′(vcfp)}

p2
p=1 by

randomly choosing parameters and ciphertexts, thus the
indistinguishability of ViewReal

A and ViewIdeal
A,S is equal to

the indistinguishability of ViewReal
A and random number.

Meanwhile, the encryption method of vcfk in E(TA) and
vcfp are the same, both of them are encrypted through
encrypting loc, op and val respectively. Therefore, we will
proof the security from the following cases.

Case 1. Encrypted locations Ek1(loc
(η)
k ), η ∈ [1, lk], k ∈

[1, n) and Ek1(loc
(ς)
p ), ς ∈ [1, lp], p ∈ [1, p2] are indistin-

guishable from random ciphertexts.
In CASPER, the length of Ref is m, thus the values of

locations belong to {0, 1, . . . ,m}, we directly use HMAC
to encrypt the locations with secret key k1, HMAC is con-
sidered as a pseudo-random function, thus the encrypted
locations must be indistinguishable from random number.

Case 2. Encrypted operations Ek2(op
(η)
k ), η ∈ [1, lk], k ∈

[1, n) andEk2(op
(ς)
p ), ς ∈ [1, lp], p ∈ [1, p2] are indistinguish-

able from random ciphertexts.
The operations belong to {sub, del, ins, ins + r, . . . },

for different locations, {sub, del, ins} are first replaced by
different values from {0, 1, 2} according to C(ξ+1)×9, then
{ins+r, ins+r+1, . . . } are replaced by C(ξ+1)×9 and a ran-
domly selected r. Finally, the processed values of operations
are encrypted by HMAC with secret key k2. Considering
C(ξ+1)×9 and r is randomly generated, HMAC is pseudo-
random, the encrypted operations must be indistinguishable
from random number.

Case 3. Encrypted characters Ek2(val
(η)
k ), η ∈ [1, lk], k ∈

[1, n) and Ek2(val
(ς)
p ), ς ∈ [1, lp], p ∈ [1, p2] are indistin-

guishable from random ciphertexts.
The encryption of characters ∈ {A,G,C, T,⊥} is same

as operations, we skip the details here due to space limita-
tions.

Most of the existing privacy-preserving SPQ schemes
may adopt other encryption technologies to guarantee
the security of original data, such as, hash function and
symmetric-key matric encryption [7], secure multi-party
computation (e.g., oblivious transfer) [8], [9], AES [11] as
well as the customized bloom filter [13]. Same as our
proposed scheme, directly applying these typical encryp-
tion technologies to privacy-preserving SPQ services are

essentially equivalent to constructing searchable encryption
schemes. Therefore, as shown in TABLE 1, relying on the
security of these encryption primitives themselves, in the
searchable encryption scenario, all the mentioned schemes
can achieve the same security level, namely IND-SCPA.

7 PERFORMANCE EVALUATION

In this section, we mainly analyze and evaluate the perfor-
mance of our CASPER in terms of computation cost and
communication overhead. Besides, we also make a compar-
ison with EFSS (i.e., EFSS I, EFSS II and EFSS II(ES)) [7].
Same as CASPER, the distance metric used in EFSS also
refers to the genomic approximate edit distance proposed in
[9]. And among the state-of-the-art work similar to ours [7],
[9], [10], [38], EFSS has been proven to maintain a significant
advantage in their work. The comparison mainly focuses
on three stages (i.e., Encrypted genetic BK-tree outsourcing,
Search request generation and Privacy-preserving similar pa-
tients query), which constitute the core parts of SPQ services,
and correspond to the phases Index generation, Trapdoor
generation and Query in EFSS, respectively.

TABLE 4
Average accuracy of CASPER compared with plain domain

Chromosome number CASPER

T = 0 T = 1 T = 2 T = 3

Chromosome 1 (540) 100% 98.70% 98.09% 97.02%
Chromosome 2 (519) 100% 98.04% 96.54% 95.45%
Chromosome 3 (397) 100% 98.99% 97.98% 97.73%
Chromosome 6 (368) 100% 98.46% 97.19% 96.01%
Chromosome 11 (389) 100% 97.45% 95.25% 94.13%
Chromosome 12 (351) 100% 98.88% 97.64% 96.60%
Chromosome 15 (315) 100% 96.93% 95.37% 97.48%
Chromosome 17 (383) 100% 97.39% 95.43% 93.49%

Chromosome number Operation over plaintext

T = 0 T = 1 T = 2 T = 3

Chromosome 1 (540) 100% 98.70% 98.09% 97.02%
Chromosome 2 (519) 100% 98.04% 96.54% 95.45%
Chromosome 3 (397) 100% 98.99% 97.98% 97.73%
Chromosome 6 (368) 100% 98.46% 97.19% 96.01%
Chromosome 11 (389) 100% 97.45% 95.25% 94.13%
Chromosome 12 (351) 100% 98.88% 97.64% 96.60%
Chromosome 15 (315) 100% 96.93% 95.37% 97.48%
Chromosome 17 (383) 100% 97.39% 95.43% 93.49%

7.1 Evaluation environment
In order to measure the integrated performance of CASPER
in the real environment, we implement CASPER with Java
programming language on three computers (2.50 GHz four-
core processor, 24GB RAM, windows 10 system), which
are connected through LAN, to simulate MI, CS and P
respectively. Then, SHA256 and AES128 are chosen as the
algorithms of HMAC and SKE. Moreover, all performance
evaluations in this section are based on a real-world dataset
and a randomly generated synthetic dataset. The details of
the two datasets are described as follows.
• Real-world dataset (CURATED). As a human genomic

database curated by experts, CURATED consists of
28371 genomic data and contains 15068 kinds of gene-
diseases caused by single nucleotide polymorphism.
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Specifically, its genomic data is recorded as sets of edits
[39], and the length of these sets ranges from 1 to 2258,
but most of them are concentrated in [10, 30].

• Synthetic dataset. In order to test the factors how
to affect the performance of CASPER, we randomly
generate a synthetic dataset, which consists of 10000
genomes. After genomes conversion, the length of
single-character edits set ranges from 10 to 30.

7.2 Accuracy evaluation

To demonstrate the accuracy of CASPER, we select the
genomes associated with different diseases from CURATED
on eight distinct chromosomes. Specifically, after the dupli-
cate genomic data on the same chromosome is deleted, there
are a total of 3262 genomes, and the detailed information is
shown in TABLE 4. For each chromosome, we first construct
a GBK-tree based on all genomic data stored in it, and then
use each data as a query request to find similar genomes.
TABLE 4 indicates that the accuracy of finding genomes
with the same gene-disease in plaintext and CASPER is the
same, which means that the protective measures taken by
CASPER do not compromise the accuracy.

TABLE. 4 also shows that the choice of tolerance limit T
can influence the accuracy of CASPER. When T is set to 0,
the physicians can find the same genome as their patients
with the probability of 100%, but as the value of T increases,
the accuracy of CASPER will decrease (≥ 90%). However,
considering the polymorphism of single nucleotide, to find
the optimal therapeutic schedule, the value of T should be
set large to dig out all possible treatments for reference.

7.3 Computation cost

In this section, we analyze and evaluate the computation
cost of CASPER, then make a comparison with EFSS in
theoretical analysis and experimental results, respectively.

• Theoretical analysis
To facilitate the description of the various types of

operations involved in CASPER, we denote the replace
operation, HMAC operation and comparison operation as
R, HM and Co, respectively. And D and Ds are used to
represent approximate edit distance computation operation
and secure computation operation, respectively. For EFSS,
we useH, Ca and Cm to represent the computation cost of a
hash operation, an addition operation and a multiplication
operation, respectively. Besides, P is used to represent an
inner product operation of a matrix and a vector and E is
a pseudo-random permutation. For the sake of simplicity,
we also assume the number of genomic data is n, and the
number of elements in vcfk′,0<k′<n and vcfp are all set to l.

Specifically, in stage Encrypted genetic BK-tree outsourcing,
for each vcfk stored in the T ’s node (except for the root
node), MI first replaces all elements in vcfk with random
value, and then encrypts the random values by HMAC.
Assume that the construction of T needs to compute ap-
proximate edit distance ρ times and compare % times, this
stage total requires (% ·Co+ρ ·D)+(n−1)×3l× (R+HM )
operations. In stage Search request generation, P needs to pro-
cess vcfp as MI does vcfk, this costs 3l×(R+HM ) operations
in total. Finally, CS obtains the identifies of similar patients

through searching E(T ) in stage Privacy-preserving similar
patients query, assume that ρ′ approximate edit distance
secure computation operations and comparison operations
are needed to search the encrypted GBK-tree, a total of
ρ′ × (Ds + Co) are cost for finding the similar genomes.

For EFSS, in the phase of Index generation, EFSS I first
converts each edit in vcfk,0≤k≤n−1 into a hash value, and
then calculates the sum of all values in n different segments.
Due to the above-mentioned steps need to be repeated κ
times, this phase total requires n× κ× [l · H + (l − 1) · Ca]
operations. Different from EFSS I, EFSS II also applies two
(2n + µ+ ν + 2)× (2n + µ+ ν + 2) dimensional invertible
matrices, which adds (n−1)·Cm+(2n+µ+ν+2)·E+2P op-
erations to change positions and encrypt indexes. Moreover,
EFSS II(ES) divides n genomes into K classes and encrypts
theseK cluster centers, thus it needs extraK×κ×[l ·H+(l−
1)·Ca+(n−1)·Cm+(2n+µ+ν+2)·E+2P] operations. In the
phase of Trapdoor generation, given a query request, similar
to the encryption of vcfk, EFSS I requires κ×[l·H+(l−1)·Ca]
operations, both EFSS II and EFSS II(ES) require κ× [l ·H+
(l−1)·Ca+(n−1)·Cm+(2n+µ+ν+2)·E+2P] operations.
Finally, for executing the similarity query in the phase of
Query, EFSS I and EFSS II require n×(κ·P+κ·Ca+Cm) op-
erations. However, for EFSS II(ES), it first finds the nearest
cluster centers to narrow down the query range, thus, only
2n
K × (κ ·P+κ ·Ca+Cm) operations in average are needed.

As shown in TABLE 5, the computation cost of CASPER is
smaller than that of EFSS in terms of theoretical analysis.

• Experimental results
To evaluate all factors which affect the computation cost

of CASPER, we first use the synthetic dataset to conduct
experiments, then make a comparison with EFSS to show
the performance in practice. According to the above anal-
ysis, we can infer that the main factors influencing the
running time of CASPER are the Number of Genomic Data
(NGD), the Length of Single-character edits Set (LSS) and
the Value of Tolerance Limit (VTL). In Figs. 8(a)-(e), we plot
the average running time of all CASPER’s stages varying
NGD, LSS and VTL, respectively. Given VTL=0 and VTL=5,
Figs. 8(a)-(b) are drawn with the NGD from 2000 to 10000
(LSS=15) and Figs. 8(c)-(d) are drawn with the LSS from
10 to 30 (NGD=5000). We can see that the running time of
outsourcing data and feedbacking query results increases
with the increase of NGD due to the growth of genomic
data that needs to be calculated. And when LSS increases,
the number of single-character edits also increases, each
stage of CASPER inevitably spends more time processing
genomic data. In Fig. 8(e), we plot the average running time
of CASPER varying VTL from 2 to 10, where NGD=500 and
LSS=5. Compared with NGD and LSS, VTL only affects the
running time of search request generation, the larger LSS
is, the higher the running time of search request genera-
tion is. In Figs. 8(f)-(h), we implement EFSS in the same
evaluation environment introduced in Section 7.1, and set
the parameters as κ = 10, n = 100, µ = 20, ν = 10 and
K = 100. Figs. 8(f)-(h) (VTL=5) show the average running
time of CASPER and EFSS at different stages, respectively.
We can see that the running time of CASPER and EFSS both
increase with the increase of NGD, and in the stages data
outsourcing, search request generation and query result
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TABLE 5
Computation cost of EFSS [7] vs our CASPER

Data outsourcing1 Search request generation2 Query result feedback3

EFSS I n× κ× [l · H+ (l − 1) · Ca] κ× [l · H+ (l − 1) · Ca] n× (κ · P + κ ·Ca +Cm)

EFSS II n× κ× [l · H+ (l − 1) · Ca + (n− 1) ·
Cm + (2n+ µ+ ν + 2) · E + 2P]

κ× [l · H+ (l− 1) ·Ca + (n− 1) ·Cm +
(2n+ µ+ ν + 2) · E + 2P] n× (κ · P + κ ·Ca +Cm)

EFSS II(ES) (n+K)× κ× [l · H+ (l − 1) · Ca + (n−
1) · Cm + (2n+ µ+ ν + 2) · E + 2P]

κ× [l · H+ (l− 1) ·Ca + (n− 1) ·Cm +
(2n+ µ+ ν + 2) · E + 2P]

2n
K × (κ ·P+κ ·Ca+Cm)

CASPER (% ·Co + ρ · D) + (n− 1)× 3l× (R+HM ) 3l × (R+HM ) ρ′ × (Ds + Co)

1 Corresponding to the stage of Encrypted genetic BK-tree outsourcing and the phase of Index generation.
2 Corresponding to the stage of Search request generation and the phase of Trapdoor generation.
3 Corresponding to the stage of Privacy-preserving similar patients query and the phase of Query.
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(d) NGD=5000, VTL=5.
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(e) NGD=5000, LSS=5.
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(f) Data outsourcing.
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(g) Search request generation.
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(h) Query result feedback.

Fig. 8. Average computation cost of CASPER vs EFSS (test 500 times). (a)(b)(c)(d)(e) are the running time of CASPER varying NGD, LSS and
VTL, respectively. (f)(g)(h) are comparisons of CASPER and EFSS at different stages varying NGD.

feedback, the maximum time of CASPER costed are 554ms,
0.1ms and 1.4ms, while that of the most efficient EFSS (i.e.,
EFSS I) costed are 25467ms, 11.6ms and 30.7ms. Obviously,
no matter at which stage, CASPER performs better.

7.4 Communication overhead
In this section, we analyze and evaluate the communication
overhead of CASPER, and make a comparison with EFSS in
theoretical analysis and experimental results, respectively.

• Theoretical analysis
In CASPER, during the stage of Encrypted genetic BK-tree

outsourcing, MI sends their encrypted GBK-tree E(T ) to CS,
E(T ) is composed of root node (∅, id0) and the other (n−1)
nodes (E(vcfk), idEk ). Assume that the average bit length of
{E(vcfk)}n−1k=1 and {idE0 , idE1 , . . . , idEn−1} are l×3hC bits and
a bits respectively, the total bit length of E(T ) is (n × a) +
(n − 1) × (l × 3hC) bits. During the stage of Search request
generation, P needs to send the query request which made
up with an encrypted genome and a tolerance limit T to CS.
Under the assumptions mentioned above, the query request
spends l×3hC+ dlog2 Te bits in total in length. Finally, after

finishing the retrieval of E(T ), a set of encrypted identifies
ID is returned to P in the stage of Privacy-preserving similar
patients query. ID contains all encrypted identifies of similar
patients whose genomes’ approximate edit distance from
Gp is not larger than T. Assume that there are τ encrypted
identifies in ID, a total of τ × a bits in length are spent to
feedback query results.

For EFSS, given a genomic database GD with n genomes
GD= {G1, G2, . . . , Gn}, and a query genome Gp. In the
phase of Index generation, EFSS I fist cuts each genome into
n segments, then sends encrypted indexes of all genome to
CS. Assume that the bit length of each encrypted segment
is hE bits, the total bit length of the encrypted index for n
genomes is n× κ× (n× hE) bits, where κ is the number of
cycle times. Since two (2n + µ + ν + 2) × (2n + µ + ν + 2)
dimensional invertible matrices are introduced in EFSS II,
it will cost 2n× κ× (2n + µ+ ν + 2)× hE bits in length in
this phase. Compared with EFSS II, EFSS II(ES) also needs
to generate encrypted indexes for K cluster center, thus
2κ × (n + K) × (2n + µ + ν + 2) × hE bits are spent in
total by EFSS II(ES). In the phase of Trapdoor generation,
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an encrypted query result (i.e., trapdoor) should be sent
to CS. Due to the method of encrypting Gp is the same as
encrypting each genome in GD, EFSS I spends κ× (n× hE)
bits in length to generate trapdoor, the cost of both EFSS II
and EFSS II(ES) are 2κ×(2n+µ+ν+2)×hE bits. Finally, CS
is required to return the top K results in the phase of Query,
thus the communication overhead of EFSS I, EFSS II and
EFSS II(ES) are all K × hE bits. As shown in TABLE 6, the
communication overhead of CASPER is smaller than that of
EFSS in terms of theoretical analysis.

• Experimental results
We also conduct experiments on the synthetic dataset

to demonstrate the communication overhead of CASPER
and EFSS. Similar to computation cost, the main factors im-
pacting the communication overhead of CASPER are NGD,
LSS and VTL, too. Moreover, we performance the evaluation
of EFSS under the same environment as CASPER, and the
parameters of EFSS are set to κ = 10, n = 100, µ = 20,
ν = 10 and K = 100. Figs. 9(a)-(b) and Figs. 9(c)-(d)
depict the communication overhead of CASPER in three
stages varying NGD from 2000 to 10000 (LSS=15, VTL=0
and 5) and LSS from 10 to 30 (NGD=5000, VTL=0 and 5),
respectively. To demonstrate the impact of VTL on commu-
nication overhead of CASPER, Fig. 9(e) is drawn with VTL
from 2 to 10, NGD=5000 and LSS=5. From all the above-
mentioned figures, we can observe that the communication
overhead of outsourcing data increases with the increase
of NGD and LSS because more and larger genomic data
needs to be transmitted. The communication overhead of
generating a search request is only affected by LSS due to
the process of search request only related to the number of
single-character edits. Besides, the communication overhead
of feedbacking query results increases with the increase of
NGD and VTL, because the query results consist of en-
crypted labels (128bits), the data needs to be transmitted to
P has no connection with LSS. In Figs. 9(f)-(h), comparisons
with EFSS in three stages are given varying NGD from 400
to 2000 (VTL=5). We can observe that our proposed scheme
spends more communication overhead than EFSS in phase
Query result feedback, but the overall communication over-
head of CASPER is still much lower than EFSS. Specifically,
the overall communication overhead costed by CASPER is
2.45MB, while that costed by the most efficient EFSS (i.e.,
EFSS I) is 15.48MB.

8 RELATED WORK

In this section, we briefly review some related work on
privacy-preserving (approximate) edit distance computa-
tion over genomic data. For this research problem, existing
solutions can be divided into two parts, outsourced comput-
ing and federated computing.

Outsourced computing based schemes. In the model of
outsourced computing, encrypted databases should be out-
sourced to a cloud server and the main computation tasks
are directly performed on the encrypted data by one or more
cloud server(s). Specifically, Atallah et al. [40] proposed a
basic protocol that can securely outsource the edit distance
computation between DNA sequences to two servers. Later,
considering the unsatisfactory performance, Atallah et al.
[41] again presented a non-interactive privacy-preserving

scheme to achieve more efficient query service than [40].
Besides, under the model of two non-colluding semi-honest
third parties, Cheng et al. [26] and Schneider et al. [8] also
proposed two secure similar sequence query scheme over
outsourced genomic databases based on approximate edit
distance. However, since the above schemes have multiple
participated servers, all of them still face inevitable huge
communication and computation overhead. To solve this
problem, the single cloud model is increasingly favored by
researchers. Wang et al. [42] designed a genomes partition
protection framework which only keeps a very small por-
tion of human genomes secret according to the different
security levels. But the latest research report says, the con-
cept of which genomes are sensitive or insensitive is still
a matter of debate. For the safety of the whole genome,
a novel genomic edit distance approximation algorithm is
proposed in [9], and combined with a private set difference
size protocols, a genome-wide, privacy-preserving similar
patients query system was constructed. To improve the
query efficiency, Mahdi et al. [30] presented a prefix tree-
based indexing algorithm for supporting secure sequence
similarity search on encrypted genomic data, but it replaced
edit distance with the hamming distance which is not so
suitable for genomes. Based on another new (approximate)
edit distance algorithm, Asharov et al. [10] also put forward
an approach for solving SPQ problem. Regrettably, both [10]
and [9] proposed their scheme only from the perspective
of efficiency. Taking data access control and personalized
search requirements into account, an efficient and fine-
grained similarity search scheme [7] was presented to enable
retrieving resemble DNA sequences over encrypted cloud
data. Once the model of outsourced computing is adopted,
there must be communication overhead for sending en-
crypted databases to the cloud server(s).

Federated computing based schemes. In the model of fed-
erated computing, private data does not be outsourced to
a semi-honest party, each party can only access its own
data and needs to cooperate with other parties to complete
a specific computation task. Jah et al. [43] contributed to
the original work in the area of privacy-preserving edit
distance computation on genomic data. They presented tree
secure protocols on the basis of oblivious transfer, but due
to the performance of oblivious transfer, their scheme is not
suitable for large-scale computing tasks. Shimizu et al [44]
combined the Burrows-Wheeler transform with additive ho-
momorphic encryption to find target queries on a genomic
database, but as we all know, homomorphic encryption
technology is still time-consuming so far. Moreover, Al Aziz
et al. [45] proposed two different approximation methods to
securely compute edit distance based on several encrypted
technologies, such as private set intersection, garbled cir-
cuits and so on. Beyond genomic data, Salem et al. [12] also
considered the sensitivity of epigenomic and transcriptomic
data, two schemes are proposed to process these data with
the highest security and privacy guarantees. However, the
federated computing model requires all participants to re-
main online until the computation is completed.

Considering the nature of genomic data, local comput-
ing will bring a heavy load to the terminals. In recent
years, researchers still pay more attention to the model of
outsourced computing [11], [38], [46], [47]. And a few of
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TABLE 6
Communication overhead of EFSS [7] vs our CASPER (bits)

Data outsourcing Search request generation Query result feedback

EFSS I n× κ× (n× hE) κ× (n× hE) K× hE

EFSS II 2n× κ× (2n+ µ+ ν + 2)× hE 2κ× (2n+ µ+ ν + 2)× hE K× hE

EFSS II(ES) 2κ× (n+K)× (2n+ µ+ ν + 2)× hE 2κ× (2n+ µ+ ν + 2)× hE K× hE

CASPER (n× a) + (n− 1)× (l × 3hC) l × 3hC + dlog2 Te τ × a
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Fig. 9. Average communication overhead of CASPER vs EFSS (test 500 times). (a)(b)(c)(d)(e) are the size of data transmitted by CASPER varying
NGD, LSS and VTL, respectively. (f)(g)(h) are comparisons of CASPER and EFSS at different stages varying NGD.

existing schemes [11], [13], [30] combines the query process
with an efficient data structure based on hamming or cosine
distance. But to the best of our knowledge, compared with
hamming and cosine distance, edit distance is a more widely
used metric to quantify the similarity of two genomes. And
BK-tree is specially designed for edit distance, it can play a
better role in SPQ when edit distance is chosen as the metric.

9 CONCLUSION

In this paper, we first designed a new method to construct
and search a genetic BK-tree (GBK-tree) for a genomic
database. Then, we proposed an efficient and privacy-
preserving similar patients query scheme over GBK-trees,
named CASPER. By taking our scheme, the medical in-
stitution can construct an encrypted GBK-tree to securely
outsource its genomic database to a cloud server, and the
cloud server could provide similar patients query services
for registered physicians in a privacy-preserving way. De-
tailed security analysis showed its security strength and
privacy-preserving ability, and extensive experiments were
conducted to demonstrate its efficiency. In the future work,
we will take the improvement of security into consideration.
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[44] K. Shimizu, K. Nuida, and G. Rätsch, “Efficient privacy-preserving
string search and an application in genomics,” Bioinformatics,
vol. 32, no. 11, pp. 1652–1661, 2016.

[45] M. M. Al Aziz, D. Alhadidi, and N. Mohammed, “Secure approx-
imation of edit distance on genomic data,” BMC medical genomics,
vol. 10, no. 2, pp. 55–67, 2017.

[46] T. Schneider and O. Tkachenko, “Towards efficient privacy-
preserving similar sequence queries on outsourced genomic
databases,” in ACM Workshop on Privacy in the Electronic Society
(WPES), 2018, pp. 71–75.

[47] J. Wei, Y. Lin, X. Yao, J. Zhang, and X. Liu, “Differential privacy-
based genetic matching in personalized medicine,” IEEE Transac-
tions on Emerging Topics in Computing, pp. 1–16, 2020.

Dan Zhu currently is a Ph.D candidate in Xidian
University. She received the B.S. degree with
the School of Telecommunications Engineering
from Xidian University, xi’an, China, in 2017. Her
research interests include applied cryptography,
data security and privacy.

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:14:18 UTC from IEEE Xplore.  Restrictions apply. 

https://www.disgenet.org/home/
https://www.disgenet.org/home/


2168-7161 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2021.3131287, IEEE
Transactions on Cloud Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 17

Hui Zhu (M’13-SM’19) received the B.S. and
Ph.D. degrees from Xidian University, Xi’an,
China, in 2003 and 2009, respectively, and the
M.S. degree from Wuhan University, Wuhan,
China, in 2005. In 2013, he was with School of
Electrical and Electronics Engineering, Nanyang
Technological University as a Research Fellow.
Since 2016, he has been the professor in the
School of Cyber Engineering, Xidian University,
China. His research interests include the areas
of applied cryptography, data security and pri-

vacy.

Xiangyu Wang currently is a Ph.D candidate in
Xidian University. He received the B.S. degree
with the School of Cyber Engineering from Xid-
ian University, xi’an, China, in 2017. His research
interests include data security and secure com-
putation outsourcing.

Rongxing Lu (S’09-M’11-SM’15-F’21) is an as-
sociate professor at the Faculty of Computer Sci-
ence (FCS), University of New Brunswick (UNB),
Canada. Before that, he worked as an assis-
tant professor at the School of Electrical and
Electronic Engineering, Nanyang Technological
University (NTU), Singapore from April 2013 to
August 2016. Rongxing Lu worked as a Post-
doctoral Fellow at the University of Waterloo
from May 2012 to April 2013. He was awarded
the most prestigious “Governor General’s Gold

Medal”, when he received his PhD degree from the Department of
Electrical & Computer Engineering, University of Waterloo, Canada, in
2012; and won the 8th IEEE Communications Society (ComSoc) Asia
Pacific (AP) Outstanding Young Researcher Award, in 2013. Also, Dr. Lu
received his first PhD degree at Shanghai Jiao Tong University, China,
in 2006. Dr. Lu is an IEEE Fellow. His research interests include applied
cryptography, privacy enhancing technologies, and IoT-Big Data security
and privacy. He has published extensively in his areas of expertise (with
H-index 74 from Google Scholar as of April 2021), and was the recipient
of 9 best (student) paper awards from some reputable journals and
conferences. Currently, Dr. Lu serves as the Vice-Chair (Conferences)
of IEEE ComSoc CIS-TC (Communications and Information Security
Technical Committee). Dr. Lu is the Winner of 2016-17 Excellence in
Teaching Award, FCS, UNB.

Dengguo Feng received the B.S. degree from
Shaanxi Normal University, Xi’an, China, in
1988, the M.S. and Ph.D. degrees from Xidian
University, Xi’an, China, in 1993 and 1995, re-
spectively. He is currently a Professor with the
Institute of Software, Chinese Academy of Sci-
ences, Beijing, China. He is a recipient of China
National Funds for Distinguished Young Scien-
tists. He is the Vice-Chairmen of Chinese Asso-
ciation for Cryptologic Research and a Steering
Committee Member of Information Technology in

National High-Tech R&D Program of China.

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:14:18 UTC from IEEE Xplore.  Restrictions apply. 


